Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Rep ; 42(4): 112364, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043352

RESUMO

The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/patologia , Imunoterapia/métodos , Transdução de Sinais , Inflamação/tratamento farmacológico , Microambiente Tumoral
2.
PLoS One ; 17(12): e0256788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480552

RESUMO

Oncogenic kinase inhibitors show short-lived responses in the clinic due to high rate of acquired resistance. We previously showed that pharmacologically exploiting oncogene-induced proteotoxic stress can be a viable alternative to oncogene-targeted therapy. Here, we performed extensive analyses of the transcriptomic, metabolomic and proteostatic perturbations during the course of treatment of Her2+ breast cancer cells with a Her2 inhibitor covering the drug response, resistance, relapse and drug withdrawal phases. We found that acute Her2 inhibition, in addition to blocking mitogenic signaling, leads to significant decline in the glucose uptake, and shutdown of glycolysis and of global protein synthesis. During prolonged therapy, compensatory overexpression of Her3 allows for the reactivation of mitogenic signaling pathways, but fails to re-engage the glucose uptake and glycolysis, resulting in proteotoxic ER stress, which maintains the protein synthesis block and growth inhibition. Her3-mediated cell proliferation under ER stress during prolonged Her2 inhibition is enabled due to the overexpression of the eIF2 phosphatase GADD34, which uncouples protein synthesis block from the ER stress response to allow for active cell growth. We show that this imbalance in the mitogenic and proteostatic signaling created during the acquired resistance to anti-Her2 therapy imposes a specific vulnerability to the inhibition of the endoplasmic reticulum quality control machinery. The latter is more pronounced in the drug withdrawal phase, where the de-inhibition of Her2 creates an acute surge in the downstream signaling pathways and exacerbates the proteostatic imbalance. Therefore, the acquired resistance mechanisms to oncogenic kinase inhibitors may create secondary vulnerabilities that could be exploited in the clinic.


Assuntos
Glucose , Recidiva Local de Neoplasia , Humanos , Resistência a Medicamentos
4.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568479

RESUMO

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Estearoil-CoA Dessaturase , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metabolismo dos Lipídeos , Lipogênese , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
5.
Cell Stem Cell ; 28(3): 424-435.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232662

RESUMO

Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Diferenciação Celular , Criança , Reparo do DNA , Anemia de Fanconi/genética , Humanos , Pele
6.
Oncoimmunology ; 8(11): 1657374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646083

RESUMO

Anti-tumor immune responses impede tumor formation, and cancers have evolved many mechanisms of immune evasion. Confirming earlier findings, we show that human tumors with high chromosomal instability (CIN+) are significantly less immunogenic, as judged by tumor lymphocyte infiltration, compared to those with more stable genomes (CIN-). This finding is paradoxical, as genomic instability is expected to evoke an innate immune response. Importantly, CIN+ tumors and cell lines exhibited suppressed expression of proteins involved in MHC class I antigen presentation at least partly due to DNA hypermethylation of the corresponding genes. Using a mouse model of the in vivo evolution of aneuploid tumors, we found that the induction of chromosomal instability in tumor cells is highly immunogenic due to the activation of the STING/TBK1 pathway and consequent increased interferon signaling and antigen presentation. However, tumors evolving under immune pressure suppress the STING/TBK1 and antigen presentation pathways and evade anti-tumor immune responses. In contrast, CIN+ tumors that develop under low immune pressure in both humans and mice retain efficient MHC class I antigen presentation and immunogenicity. Altogether, this study identifies an important mechanism of immune evasion in chromosomally unstable tumors.

7.
Bioinformatics ; 35(21): 4413-4418, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070723

RESUMO

MOTIVATION: An important goal of cancer genomics initiatives is to provide the research community with the resources for the unbiased query of cancer mechanisms. Several excellent web platforms have been developed to enable the visual analyses of molecular alterations in cancers from these datasets. However, there are few tools to allow the researchers to mine these resources for mechanisms of cancer processes and their functional interactions in an intuitive unbiased manner. RESULTS: To address this need, we developed SEMA, a web platform for building and testing of models of cancer mechanisms from large multidimensional cancer genomics datasets. Unlike the existing tools for the analyses and query of these resources, SEMA is explicitly designed to enable exploratory and confirmatory analyses of complex cancer mechanisms through a suite of intuitive visual and statistical functionalities. Here, we present a case study of the functional mechanisms of TP53-mediated tumor suppression in various cancers, using SEMA, and identify its role in the regulation of cell cycle progression, DNA repair and signal transduction in different cancers.SEMA is a first-in-its-class web application designed to allow visual data mining and hypothesis testing from the multidimensional cancer datasets. The web application, an extensive tutorial and several video screencasts with case studies are freely available for academic use at https://sema.research.cchmc.org/. AVAILABILITY AND IMPLEMENTATION: SEMA is freely available at https://sema.research.cchmc.org. The web site also contains a detailed Tutorial (also in Supplementary Information), and a link to the YouTube channel for video screencasts of analyses, including the analyses presented here. The Shiny and JavaScript source codes have been deposited to GitHub: https://github.com/msolmazm/sema. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mineração de Dados , Neoplasias , Genômica , Humanos , Transdução de Sinais , Software
8.
Nat Cell Biol ; 21(5): 640-650, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011167

RESUMO

Spliceosome mutations are common in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), but the oncogenic changes due to these mutations have not been identified. Here a global analysis of exon usage in AML samples revealed distinct molecular subsets containing alternative spliced isoforms of inflammatory and immune genes. Interleukin-1 receptor-associated kinase 4 (IRAK4) was the dominant alternatively spliced isoform in MDS and AML and is characterized by a longer isoform that retains exon 4, which encodes IRAK4-long (IRAK4-L), a protein that assembles with the myddosome, results in maximal activation of nuclear factor kappa-light-chain-enhancer of B cells (NF-κB) and is essential for leukaemic cell function. Expression of IRAK4-L is mediated by mutant U2 small nuclear RNA auxiliary factor 1 (U2AF1) and is associated with oncogenic signalling in MDS and AML. Inhibition of IRAK4-L abrogates leukaemic growth, particularly in AML cells with higher expression of the IRAK4-L isoform. Collectively, mutations in U2AF1 induce expression of therapeutically targetable 'active' IRAK4 isoforms and provide a genetic link to activation of chronic innate immune signalling in MDS and AML.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Fator de Processamento U2AF/genética , Processamento Alternativo/genética , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata/genética , Inflamação/genética , Inflamação/patologia , Leucemia Mieloide Aguda/patologia , Masculino , Mutação/genética , Síndromes Mielodisplásicas/patologia , Isoformas de Proteínas/genética , Transdução de Sinais , Spliceossomos/genética
9.
Nat Commun ; 9(1): 4410, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353012

RESUMO

The nature and role of global transcriptional deregulations in cancers are not fully understood. We report that a large proportion of cancers have widespread defects in mRNA transcription elongation (TE). Cancers with TE defects (TEdeff) display spurious transcription and defective mRNA processing of genes characterized by long genomic length, poised promoters and inducible expression. Signaling pathways regulated by such genes, such as pro-inflammatory response pathways, are consistently suppressed in TEdeff tumors. Remarkably, TEdeff correlates with the poor response and outcome in immunotherapy, but not chemo- or targeted therapy, -treated renal cell carcinoma and metastatic melanoma patients. Forced pharmacologic or genetic induction of TEdeff in tumor cells impairs pro-inflammatory response signaling, and imposes resistance to the innate and adaptive anti-tumor immune responses and checkpoint inhibitor therapy in vivo. Therefore, defective TE is a previously unknown mechanism of tumor immune resistance, and should be assessed in cancer patients undergoing immunotherapy.


Assuntos
Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Elongação da Transcrição Genética , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Estudos de Coortes , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neoplasias/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Linfócitos T/imunologia
10.
Nat Cell Biol ; 20(11): 1328, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30190576

RESUMO

In the version of this Article originally published, in ref. 34 the first author's name was spelled incorrectly. The correct reference is: Rodón, L. et al. Active CREB1 promotes a malignant TGFß2 autocrine loop in glioblastoma. Cancer Discov. 10, 1230-1241 (2014). This has now been amended in all online versions of the Article.

11.
Neoplasia ; 20(9): 917-929, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30121008

RESUMO

Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, ß-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.


Assuntos
Androgênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Apoptose , Biomarcadores , Proliferação de Células , Humanos , Imuno-Histoquímica , Masculino , Camundongos , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Regulador Transcricional ERG/metabolismo , beta Catenina/metabolismo
12.
Nat Cell Biol ; 20(10): 1228, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30089841

RESUMO

In the version of this Article originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Article.

13.
Oncotarget ; 9(51): 29665-29679, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30038712

RESUMO

High-risk B-cell acute lymphoblastic leukemia (B-ALL) remains a therapeutic challenge despite advances in the use of tyrosine kinase inhibitors and chimeric-antigen-receptor engineered T cells. Lymphoblastic-leukemia precursors are highly sensitive to oxidative stress. KLF5 is a member of the Krüppel-like family of transcription factors. KLF5 expression is repressed in B-ALL, including BCR-ABL1+ B-ALL. Here, we demonstrate that forced expression of KLF5 in B-ALL cells bypasses the imatinib resistance which is not associated with mutations of BCR-ABL. Expression of Klf5 impaired leukemogenic activity of BCR-ABL1+ B-cell precursors in vitro and in vivo. The complete genetic loss of Klf5 reduced oxidative stress, increased regeneration of reduced glutathione and decreased apoptosis of leukemic precursors. Klf5 regulation of glutathione levels was mediated by its regulation of glutathione-S-transferase Mu 1 (Gstm1), an important regulator of glutathione-mediated detoxification and protein glutathionylation. Expression of Klf5 or the direct Klf5 target gene Gstm1 inhibited clonogenic activity of Klf5∆/∆ leukemic B-cell precursors and unveiled a Klf5-dependent regulatory loop in glutamine-dependent glutathione metabolism. In summary, we describe a novel mechanism of Klf5 B-ALL suppressor activity through its direct role on the metabolism of antioxidant glutathione levels, a crucial positive regulator of leukemic precursor survival.

14.
Nat Cell Biol ; 20(7): 823-835, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915361

RESUMO

Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Encefálicas/enzimologia , Proliferação de Células , Metabolismo Energético , Glioblastoma/enzimologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
PLoS Genet ; 14(3): e1007227, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538372

RESUMO

Esophageal cancer occurs as either squamous cell carcinoma (ESCC) or adenocarcinoma. ESCCs comprise almost 90% of cases worldwide, and recur with a less than 15% five-year survival rate despite available treatments. The identification of new ESCC drivers and therapeutic targets is critical for improving outcomes. Here we report that expression of the human DEK oncogene is strongly upregulated in esophageal SCC based on data in the cancer genome atlas (TCGA). DEK is a chromatin-associated protein with important roles in several nuclear processes including gene transcription, epigenetics, and DNA repair. Our previous data have utilized a murine knockout model to demonstrate that Dek expression is required for oral and esophageal SCC growth. Also, DEK overexpression in human keratinocytes, the cell of origin for SCC, was sufficient to cause hyperplasia in 3D organotypic raft cultures that mimic human skin, thus linking high DEK expression in keratinocytes to oncogenic phenotypes. However, the role of DEK over-expression in ESCC development remains unknown in human cells or genetic mouse models. To define the consequences of Dek overexpression in vivo, we generated and validated a tetracycline responsive Dek transgenic mouse model referred to as Bi-L-Dek. Dek overexpression was induced in the basal keratinocytes of stratified squamous epithelium by crossing Bi-L-Dek mice to keratin 5 tetracycline transactivator (K5-tTA) mice. Conditional transgene expression was validated in the resulting Bi-L-Dek_K5-tTA mice and was suppressed with doxycycline treatment in the tetracycline-off system. The mice were subjected to an established HNSCC and esophageal carcinogenesis protocol using the chemical carcinogen 4-nitroquinoline 1-oxide (4NQO). Dek overexpression stimulated gross esophageal tumor development, when compared to doxycycline treated control mice. Furthermore, high Dek expression caused a trend toward esophageal hyperplasia in 4NQO treated mice. Taken together, these data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Proteínas de Ligação a DNA/metabolismo , Epitélio/patologia , Neoplasias Esofágicas/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Queratinócitos/patologia , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética , Tetraciclina/farmacologia , Língua/efeitos dos fármacos , Língua/patologia , Transgenes
16.
Oncotarget ; 8(42): 71385-71392, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069713

RESUMO

Chromosomal instability is a hallmark of human cancers, and is characterized by large structural variations in the genome. Such large structural variations are expected to create intrinsic collateral stress due to gene dosage changes in many genes that are co-deleted or co-amplified in large chromosomal segments (onco-passenger genes). We show that the tumor-toxic effects of gene dosage changes of onco-passenger genes are compensated by the uncoupling of their copy number variations from their expression by means of selective DNA methylation. For example, collateral co-amplification of genes in tumor suppressor pathways, such as the TGF-ß and inflammatory signaling pathways, are compensated by DNA hypermethylation to suppress their overexpression, while collateral deletion of pro-oncogenic genes are compensated by DNA hypomethylation to promote their expression from the single remaining allele. Our work reveals an important tumorigenic mechanism of regulation of toxic gene copy number imbalance in tumor cells arising from chromosomal instability, and suggests that targeting the DNA methylation machinery may prevent compensatory regulation of onco-passenger gene expression in chromosomally unstable cancers, and re-activate dormant tumor suppressor pathways for effective therapy.

17.
Mol Cancer Ther ; 16(11): 2432-2441, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28864682

RESUMO

Inhibition of mTOR signaling using the rapalog everolimus is an FDA-approved targeted therapy for patients with lung and gastroenteropancreatic neuroendocrine tumors (NET). However, patients eventually progress on treatment, highlighting the need for additional therapies. We focused on pancreatic NETs (pNET) and reasoned that treatment of these tumors upon progression on rapalog therapy, with an mTOR kinase inhibitor (mTORKi), such as CC-223, could overcome a number of resistance mechanisms in tumors and delay cardiac carcinoid disease. We performed preclinical studies using human pNET cells in vitro and injected them subcutaneously or orthotopically to determine tumor progression and cardiac function in mice treated with either rapamycin alone or switched to CC-223 upon progression. Detailed signaling and RNA sequencing analyses were performed on tumors that were sensitive or progressed on mTOR treatment. Approximately 57% of mice bearing pNET tumors that progressed on rapalog therapy showed a significant decrease in tumor volume upon a switch to CC-223. Moreover, mice treated with an mTORKi exhibited decreased cardiac dilation and thickening of heart valves than those treated with placebo or rapamycin alone. In conclusion, in the majority of pNETs that progress on rapalogs, it is possible to reduce disease progression using an mTORKi, such as CC-223. Moreover, CC-223 had an additional transient cardiac benefit on valvular fibrosis compared with placebo- or rapalog-treated mice. These results provide the preclinical rationale to further develop mTORKi clinically upon progression on rapalog therapy and to further test their long-term cardioprotective benefit in those NET patients prone to carcinoid syndrome. Mol Cancer Ther; 16(11); 2432-41. ©2017 AACR.


Assuntos
Doença Cardíaca Carcinoide/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Animais , Doença Cardíaca Carcinoide/complicações , Doença Cardíaca Carcinoide/genética , Doença Cardíaca Carcinoide/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Everolimo/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Tumores Neuroendócrinos/complicações , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/administração & dosagem , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 8(14): 23414-23426, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28423581

RESUMO

Oropharyngeal squamous cell carcinomas (OPSCC) are common, have poor outcomes, and comprise two biologically and clinically distinct diseases. While OPSCC that arise from human papillomavirus infections (HPV+) have better overall survival than their HPV- counterparts, the incidence of HPV+ OPSCC is increasing dramatically, affecting younger individuals which are often left with life-long co-morbidities from aggressive treatment. To identify patients which do poorly versus those who might benefit from milder regimens, risk-stratifying biomarkers are now needed within this population. One potential marker is the DEK oncoprotein, whose transcriptional upregulation in most malignancies is associated with chemotherapy resistance, advanced tumor stage, and worse outcomes. Herein, a retrospective case study was performed on DEK protein expression in therapy-naïve surgical resections from 194 OPSCC patients. We found that DEK was associated with advanced tumor stage, increased hazard of death, and interleukin IL6 expression in HPV16+ disease. Surprisingly, DEK levels in HPV16- OPSCC were not associated with advanced tumor stage or increased hazard of death. Overall, these findings mark HPV16- OPSCC as an exceptional malignancy were DEK expression does not correlate with outcome, and support the potential prognostic utility of DEK to identify aggressive HPV16+ disease.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Orofaríngeas/metabolismo , Infecções por Papillomavirus/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/complicações , Carcinoma de Células Escamosas/cirurgia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Papillomavirus Humano 16/fisiologia , Humanos , Imuno-Histoquímica , Interleucina-16/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Orofaríngeas/complicações , Neoplasias Orofaríngeas/cirurgia , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas de Ligação a Poli-ADP-Ribose , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Análise de Sobrevida
19.
Cancer Discov ; 7(8): 832-851, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28455392

RESUMO

Genomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling. By integration of multigenome chemical and genetic screens, recurrent architectural variants in melanoma tumor genomes, and patient outcome data, we identified two mechanistic subtypes of BRAFV600 melanoma that inform new cancer cell biology and offer new therapeutic opportunities. Subtype membership defines sensitivity to clinical MEK inhibitors versus TBK1/IKBKε inhibitors. Importantly, subtype membership can be predicted using a robust quantitative five-feature genetic biomarker. This biomarker, and the mechanistic relationships linked to it, can identify a cohort of best responders to clinical MEK inhibitors and identify a cohort of TBK1/IKBKε inhibitor-sensitive disease among nonresponders to current targeted therapy.Significance: This study identified two mechanistic subtypes of melanoma: (1) the best responders to clinical BRAF/MEK inhibitors (25%) and (2) nonresponders due to primary resistance mechanisms (9.9%). We identified robust biomarkers that can detect these subtypes in patient samples and predict clinical outcome. TBK1/IKBKε inhibitors were selectively toxic to drug-resistant melanoma. Cancer Discov; 7(8); 832-51. ©2017 AACR.See related commentary by Jenkins and Barbie, p. 799This article is highlighted in the In This Issue feature, p. 783.


Assuntos
Biomarcadores Tumorais/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/classificação , Melanoma/patologia , Camundongos , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Med ; 23(4): 472-482, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28319094

RESUMO

Tyrosine-kinase inhibitor (TKI) therapy for human cancers is not curative, and relapse occurs owing to the continued presence of tumor cells, referred to as minimal residual disease (MRD). The survival of MRD stem or progenitor cells in the absence of oncogenic kinase signaling, a phenomenon referred to as intrinsic resistance, depends on diverse growth factors. Here we report that oncogenic kinase and growth-factor signaling converge to induce the expression of the signaling proteins FBJ osteosarcoma oncogene (c-FOS, encoded by Fos) and dual-specificity phosphatase 1 (DUSP1). Genetic deletion of Fos and Dusp1 suppressed tumor growth in a BCR-ABL fusion protein kinase-induced mouse model of chronic myeloid leukemia (CML). Pharmacological inhibition of c-FOS, DUSP1 and BCR-ABL eradicated MRD in multiple in vivo models, as well as in mice xenotransplanted with patient-derived primary CML cells. Growth-factor signaling also conferred TKI resistance and induced FOS and DUSP1 expression in tumor cells modeling other types of kinase-driven leukemias. Our data demonstrate that c-FOS and DUSP1 expression levels determine the threshold of TKI efficacy, such that growth-factor-induced expression of c-FOS and DUSP1 confers intrinsic resistance to TKI therapy in a wide-ranging set of leukemias, and might represent a unifying Achilles' heel of kinase-driven cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fosfatase 1 de Especificidade Dupla/genética , Genes abl/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Transplante de Neoplasias , Neoplasia Residual , Neoplasias Experimentais/genética , Inibidores de Proteínas Quinases/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...